PAPER - II : MODEL PAPER - 07

(SPECIMEN PAPER) MATHEMATICS & STATISTICS COMMERCE

TIME : 1 HR 30 MIN

Q4. Attempt any six of the following

01. The ratio of prices of two cycles was
16:23. Two years later when the price of first
cycle has increased by 10% and that of
second by ₹ 477; the ratio of prices becomes
11:20. Find the original prices of two cycles

SOLUTION

Let price of first cycle = 16x Price of second cycle = 23x

As per the given condition

16x + <u>10 (</u> 16x) <u>100</u> 23x + 477	= <u>11</u> 20
$16x + \frac{16x}{10}$	$= \frac{11}{20} (23x + 477)$
<u>176x</u> 10	= <u>11</u> (23x + 477) 20
352x	= 253x + 5247
99x	= 5247
х	= 53

Price of first cycle = 16x = 16(53) = ₹ 848 Price of second cycle = 23x = 23(53) = ₹ 1219

02. for an immediate annuity paid for 3 years with interest compounded at 10% p.a. its present value is ₹ 10,000. What is the accumulated value after 3 years $(1.1^3 = 1.331)$

SOLUTION

 $P = \Box 10,000, n = 3 ; i = 0.1$ $A = P(1 + i)^{n}$ = 10000((1 + 0.1)3)

- 10000((1+0.1))

= 10000(1.331)

= ₹13,310

03. the probability of defective bolts in a workshop is 40% . Find the mean and variance of defective bolts out os 10 bolts

SOLUTION

n = 10, p = prob of a defective bolt = $\frac{40}{100}$ = $\frac{2}{5}$ q = 1 - p = $\frac{3}{5}$

mean = np = $10 \times \frac{2}{5} = 4$ variance = npq = $10 \times \frac{2}{5} \times \frac{3}{5} = \frac{12}{5}$

04. a cargo of rice is insured at 5/8% to cover 80% its value . The premium paid is □ 5,250 . If the rice is worth ₹ 21 per kilo , how many kilos of rice did the cargo contain

SOLUTION

value of carae = x $= \frac{80}{100} \times = \frac{4x}{5}$ insured value = <u>5</u>% 8 Rate of premium = ₹ 5,250 Premium $= \frac{5}{800} \times \frac{4x}{5}$ 5250 = ₹ 10,50,000 х value of cargo = \Box 10,50,000 price of rice = □ 21 per kilo no of kgs of rice in = 10,50,000the cargo 21 = 50,000 kg

(12)

05. the pdf of continuous random variable X is given by

f(x)	=	2x	;	0 < x < 1
	=	0	;	otherwise

SOLUTION

$$P(\frac{1}{3} < X < \frac{1}{2})$$

$$= \int_{1/2}^{1/2} 2x \, dx$$

$$= \left(\frac{2x^2}{2}\right)_{1/3}^{1/2}$$

$$= \left(x^2\right)_{1/3}^{1/2}$$

$$= \left(\frac{1}{4}\right) - \left(-\frac{1}{9}\right)$$

$$= \frac{5}{36}$$

06. an agent was paid □ 58,500 as commission on the sale of computers at the rate of 12.5%. If the price of each computer was ₹ 18,000, how many computers did he sell

SOLUTION

Price of computer	=	₹ 18,000
Rate of commission	=	12.5%
Commission	=	$\frac{125}{1000}$ × 18000
	=	₹ 2250
Agents total commiss	sion	= ₹ 58,500
Hence		
No of computers solo	= k	$\frac{58500}{2250}$ = 26

07. $P(x) = \frac{x-1}{3}$; x = 1, 2, 3= 0; otherwise Verify whether the function is a p.m.f.

SOLUTION

P(x) =
$$\frac{x-1}{3}$$
; x = 1, 2, 3
p(1) = 0
p(2) = $\frac{1}{3}$
p(3) = $\frac{2}{3}$
a) p(x) $\ge 0 \quad \forall x$
b) $\Sigma p(x) = 1$ Hence function is a pmf

08. if $X \sim N(4, 25)$; then find $P(x \le 4)$

SOLUTION

In normal distribution ; $P(x \ge \mu) = P(x \le \mu) = 0.5$

Hence $P(x \le 4) = 0.5$

Q5.

(A) Attempt any TWO of the following (06)
10. John and Mathew started a business with their capitals in the ratio 8 : 5 . After 8 months , John added 25% of his earlier capital as further investment . At the same time , Mathew withdrew 20% of his earlier capital . At the end of the year , they earned ₹ 52,000 as profit . How should they divide the profit between them

SOLUTION

PARTNER's NAME	CAPITAL INVESTED	PE IN	riod of vestment
P + 25%	₹ 8k ₹ 2k	8	MONTHS
20,0	₹ 10k	4	MONTHS
Q -20%	₹5k ₹k	8	MONTHS
2070	₹4k	4	MONTHS

STEP 1:

Profits will be shared in the

'RATIO OF PRODUCT OF CAPITAL INVESTED & PERIOD OF INVESTMENT'

	Р		Q
=	8k x 8 + 10k x 4	:	5k x 8 + 4k x 4
=	64k + 40k	:	40k + 16k
=	104k	:	56k
=	13	:	7 TOTAL = 20
STEP Total P's st	<u>2</u> : profit hare of profit	=	₹ 52,000 <u>13</u> × 52000 <u>20</u> ₹ 33,800
Q's s	hare of profit	=	<u>7</u> × 52,000 20
		=	₹ 19,200

02.	Age x	0	1	2
	lx	1000	880	876
	Тx			3323

Calculate e_0^0 , e_1^0 , e_2^0

SOLUTION

$$L_{x} = \frac{lx + lx + 1}{2}$$

$$\swarrow L_{0} = \frac{l_{0} + l_{1}}{2} = \frac{1000 + 880}{2} = 940$$

$$\swarrow L_{1} = \frac{l_{1} + l_{2}}{2} = \frac{880 + 876}{2} = 878$$

$$\begin{array}{rcl} \mathbf{e_x^0} & = & \underline{\mathbf{T_x}} \\ \hline \mathbf{e_0^0} & = & \underline{\mathbf{T_0}} \\ e & 10 & = & \underline{\mathbf{T_0}} \\ e & 1^0 & = & \underline{\mathbf{T_1}} \\ e & 1^0 & = & \underline{\mathbf{T_1}} \\ e & 1^1 & = & \underline{4201} \\ e & 1^1 & 1^1 \\ e &$$

$$T_{X+1} = T_X - L_X$$

03.

in a town,10 accidents take place in a span of 50 days. Assuming that the number of accidents follow Poisson Distribution, find the probability that there will be one or more accidents per day ($e^{-0.2} = 0.8187$)

SOLUTION

m	= = =	average no of accidents per day $10_{/50}$ 0.2
r.v	′.x	= no. of accidents per day
Х~	Р(m = 0.2)
Ρ(one	e or more accidents per day)
=	P (2	$x \ge 1$)
=	Ρ(1) + P(2) +
=	1	– P(0)
=	1	$- e^{-0.20.20} P(X) = e^{-m}m^{X}$
		0! x!
=	1	- e ^{-0.2}
=	1	- 0.8187
=	0.	1813

Q5.

(B) Attempt any TWO of the following (06)

01. if the difference between true discount and bankers discount on a sum due 4 months hence is ₹ 20, find true discount, bankers discount and the amount of the bill, the rate of simple interest charged being 5% p.a.

SOLUTION

STEP 1 : BD - TD = 20 BG = 20Int on TD for 4 months @ 5% = 20 $TD \frac{x 4}{12} \frac{x 5}{100} = 20$ $TD = \frac{20 \times 12 \times 100}{4 \times 5}$

TD = ₹1200

STEP 2 :
BD - TD = 20
BD - 1200 = 20
BD = ₹ 1220

STEP 3 :

BD = Int on FV for 4 months @ 5% p.a

 $1200 = FV \times \frac{4}{12} \times \frac{5}{100}$ FV = $\frac{1200 \times 12 \times 100}{4 \times 5}$ FV = ₹ 72,000

02

Х	:	21	25	26	24	19
Y	:	19	20	24	21	16
Obta	in	regre	ssion	line >	(on Y	

SOLUTION

х	у	x – x	y – y	$(y - y)^2$	(x-x)(y-y)
21	19	- 2	- 1	1	2
25	20	2	0	0	0
26	24	3	4	16	12
24	21	1	1	1	1
19	16	-4	- 4	16	16
$\overline{x} = 2$	23	0		34	31
	y = 20)			

$$bxy = \frac{\Sigma(x - \overline{x})(y - \overline{y})}{\Sigma(y - y)^2}$$

$$= \frac{31}{34}$$

= 0.91 (DIRECT DIVISION)

 $x - \overline{x} = bxy(y - \overline{y})$ x - 23 = 0.91(y - 20) x - 23 = 0.91y - 18.2 x = 0.91y + 4.8 **03.** Determine the optimal sequence involving 5 jobs and three machines M₁, M₂ and M₃. The jobs are processed on three machines in the order M₁M₂M₃. Also find the minimum total elapsed time T and idle time for three machines. Processing time in minutes are

Job	J1	J ₂	J3	J 4	J5
Mı	7	12	11	9	8
M2	8	9	5	6	7
M3	11	13	9	10	14

STEP 1 : Min time on $M_1 = 7$; Max time on $M_2 = 9$; Min time on $M_3 = 9$ Min $(M_3) \ge Max (M_2)$ condition satisfied to convert 3 m/c's to 2 m/c's

STEP 2 : CONVERTING TO 2 FICTITIOUS M/C'S G & H

G = M1	+	M2	Job	Jı	J2	J3	J4	J5
H = M2	+	M3	G H	15 19	21 22	16 14	15 16	15 21

STEP 3 : OPTIMAL SEQUENCE

|--|

STEP 4 : WORK TABLE

Job	Jı	J4	J5	J ₂	73		total processing time
Μı	7	9	8	12	11	=	47 min
M ₂	8	6	7	9	5	=	35 min
Мз	11	10	14	13	9	=	57 min

JOBS	M1		IDLE	M2		IDLE	M3		IDLE
	IN	OUT	TIME	IN	OUT	TIME	IN	Ουτ	TIME
						7			15
Jı	0	7		7	15	1	15	26	
J4	7	16		16	22	2	26	36	
J5	16	24		24	31	5	36	50	
J2	24	36		36	45	2	50	63	
J3	36	47	25	47	52	20	63	72	

STEP 5 : Total elapsed time T = 72 min

Idle time on $M_1 = T - (sum of processing time of all 5 jobs on <math>M_1) = 72 - 47 = 25 min$ Idle time on $M_2 = T - (sum of processing time of all 5 jobs on <math>M_2) = 72 - 35 = 37 min$ Idle time on $M_3 = T - (sum of processing time of all 5 jobs on <math>M_3) = 72 - 57 = 15 min$

Q6.

(A)	Attempt	any	тwо	of the	follow	ving	(06)
Dista	nce (km)	x	80	120	160	200	240
Time	(Hr)	у	2	3	4	5	6

COMMENT:

there is perfect positive correlation between the two variables

02.

for 20 pairs of observations on two variables x and y, the following data is available $\Sigma(x-10) = 60$; $\Sigma(y-15) = 80$; $\Sigma(x-10)^2 = 990$; $\Sigma(y-15)^2 = 960$, $\Sigma(x-10)(y-15) = 480$ Find the correlation coefficient between x and y

SOLUTION

Let x - 10 = u & y - 15 = v Given $\Sigma u = 60$, $\Sigma v = 80$, $\Sigma u^2 = 990$, $\Sigma v^2 = 960$ $\Sigma u v = 480$, n = 20

$$r = \frac{n\Sigma \upsilon v - \Sigma \upsilon . \Sigma v}{\sqrt{n\Sigma \upsilon^2 - (\Sigma \upsilon)^2} \sqrt{n\Sigma v^2 - (\Sigma v^2)}}$$

$$= \frac{20(480) - (60)(80)}{\sqrt{20(990) - (60)^2} \sqrt{20(960) - (80)^2}}$$

$$= \frac{9600 - 4800}{\sqrt{19800 - 3600}\sqrt{19200 - 6400}}$$
$$= \frac{4800}{\sqrt{16200}\sqrt{12800}}$$
$$= \frac{48}{\sqrt{162}\sqrt{128}}$$
$$= \frac{48}{\sqrt{81 \times 256}}$$
$$= \underline{48} = \underline{1}$$

9 x 16

03.

The probability that a bomb dropped from an aeroplane will strike a target is 1 / 5 If four bombs are dropped , find the probability that a) exactly two will strike the target b) at least one will strike the target

3

SOLUTION

4 bombs are dropped , n = 4 for a trial success – bomb strikes the target p = 1/5, q = 1 - p = 4/5r.v.x = no of successes = 0 , 1, 2, 3, 4 X ~ B(4, 1/5) a) P(exactly two will hit the target)

$$= P(x = 2)$$

$$= {}^{4}C_{2} \left(\frac{1}{5}\right)^{2} \left(\frac{4}{5}\right)^{2}$$

$$= \frac{6 \times 1 \times 16}{625}$$

$$= \frac{96}{625}$$

b) P(at least one will strike the target)

= P(x ≥ 1)
= P(1) + P(2)
= 1 - P(0)
= 1 - ⁴C0
$$\left(\frac{1}{5}\right)^{0} \left(\frac{4}{5}\right)^{4}$$

= 1 - $\frac{256}{625}$
= 369

625

Q6.

(B) Attempt any TWO of the following (08)

01. Find Spearman's Rank Correlation

х	Y	Rx	Ry	d=Rx-Ry	d ²
68	62	4	5	-1	1
64	58	6	7	-1	1
75	68	2.5	3.5	-1	1
50	45	9	10	-1	1
64	81	6	1	5	25
80	60	1	6	-5	25
75	68	2.5	3.5	-1	1
40	48	10	9	1	1
55	50	8	8	0	0
64	70	6	2	4	16
				$\Sigma d = 0$	
				$\Sigma d^2 = 72$	

CORRECTION FACTORS

Using $\frac{m(m^2 - 1)}{12}$ $tx = \frac{2(2^2 - 1)}{12} + \frac{3(3^2 - 1)}{12}$ = 0.5 + 2 = 2.5 $ty = \frac{2(2^2 - 1)}{12} = 0.5$ $\Sigma d^2 corrected = \Sigma d^2 + tx + ty$ = 72 + 2.5 + 0.5= 75

$$R = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}$$
$$= 1 - \frac{6(75)}{10(99)}$$
$$= 1 - \frac{5}{11}$$
$$= \frac{6}{11}$$

= 0.545

02. Find k if the function f defined by

f(x) = kx ; 0 < x < 2= 0 ; otherwise is a p.d.f. of a random variable X Also find P(1/4 < x < 1/3)

SOLUTION

$$\int_{0}^{2} kx dx = 1$$

$$k \int_{0}^{1} x dx = 1$$

$$k \left(\frac{x^{2}}{2}\right)^{2} = 1$$

$$k(2) = 1$$

$$k = \frac{1}{2}$$

 $\therefore \text{ p.d.f. of a random variable X}$ $f(x) = \frac{x}{2} ; \quad 0 < x < 2$ $= 0 ; \quad \text{otherwise}$ $b) P(^{1}/_{4} < x < ^{1}/_{3})$ $= \int_{1/4}^{1/3} \frac{x}{2} \, dx$ $\frac{1}{4}$ $= \frac{1}{4} \left\{ \left(\frac{1}{9}\right) - \left(\frac{1}{16}\right) \right\}$ $= \frac{1}{4} \left(\frac{7}{144}\right)$ $= \frac{7}{576}$

03. A production unit makes special type of metal chips by combining copper and brass. The standard weight of the chip must be at least 5 gm. The basic ingredients copper and brass cost ₹ 8 and ₹ 5 per gm. The durability considerations dictate that the metal chip must not contain more than 4 gm of brass and should contain minimum 2 gm of copper. Find the minimum cost of the metal chip satisfying the above conditions

Let copper input = x gm

Brass input = y gm

CONSTRAINT

1. since standard weight of the chip must be at least 5 gm;

x + y ≥ 5

- 2. since metal chip must not contain more than 4 gm of brass and should contain minimum 2 gm of copper $x \ge 2 \ ; \ y \le 4$
- 3. since x & y are inputs in gm , cannot be ve ; x , $y \ge 0$

OBJECTIVE FUNCTION

copper and brass cost ₹ 8 and ₹ 5 per gm

total cost = 8x + 5y (in \Box)

 \therefore Minimize z = 8x + 5y

LPP MODEL

OPTIMAL SOLUTION : metal chip should contain 2 gm of copper and 3 gm of brass to keep the cost minimum to ₹ 31